Overview of Wind Stress Working Group

James B. Edson University of Connecticut james.edson@uconn.edu

Motivation

Motivation for the working group can be found in a recent ocean flux remote sensing survey paper by Bourassa et al. (2010 TOS):

- Recent studies find that scatterometers, and presumably other wind-sensing instruments, respond to stress rather than wind, accounting for variability due to wind, buoyancy, surface currents, waves, and air density.
- It is anticipated that scatterometer-derived stresses will soon be available from reprocessed QuikSCAT observations, with regional and seasonal biases proportionally smaller than for stresses determined previously.
- This is a tremendous advantage for improved accuracy in other turbulent fluxes because wind stress is more closely related to fluxes than wind: stress observations are believed to account for all sea-state-related variability in surface fluxes of momentum, heat, and moisture.
- Because sea state is not well observed from space, this approach should remove one source of error in studies of climate change.

Background

Motivation for the working group can be found in a recent ocean flux remote sensing survey paper by Bourassa et al. (2010 TOS):

- Recent studies find that scatterometers, and presumably other wind-sensing instruments, respond to stress rather than wind, accounting for variability due to wind, buoyancy, surface currents, waves, and air density.
- The basis for this is that radar backscatter is proportion to surface roughness, and we generally assume that surface roughness is most closely correlated with wind stress, τ .
- Wind stress is most closely correlated with the equilalent neutral wind speed (squared) relative to the sea surface, U_{rN} . Since wind speed varies with height, the neutral wind speed is typically computed at a height of 10-m, U_{r10N} .
- The relationship between U_{r10N} and τ given found using a neutral drag coefficient C_{D10N} :

$$\vec{\tau} = \rho_a C_{D10N} \left| \vec{U}_{r10N} \right| \vec{U}_{r10N}$$

• Therefore, the stress can be estimated from scatterometer-derived winds through a drag coefficient without the need for stability corrections.

Background

- Recent studies find that scatterometers, and presumably other wind-sensing instruments, respond to stress rather than wind, accounting for variability due to wind, buoyancy, surface currents, waves and air density.
- The relationship between U_{r10N} and τ given found using a neutral drag coefficient C_{D10N} :

$$\vec{\tau} = \rho_a C_{D10N} \vec{U}_{r10N} | \vec{U}_{r10N}$$

• Geophysical Model Functions (GFMs) are typically derived using equivalent neutral winds from buoy and model data using MO similarity scaling:

$$U_{r10N} = U(z_b) - U_0 + \frac{u_*}{\kappa} \left[\ln\left(\frac{10}{z_b}\right) + \psi_m\left(\frac{z_b}{L}\right) \right] \qquad \Longrightarrow \qquad u_*^2 = \left| \vec{\tau} \right| \qquad \& \quad \left| \vec{z} \right| = -\frac{z\kappa g}{T_v} \frac{wT_v}{u_*^3}$$

Preliminary (TDB) Charge

- Recent studies find that scatterometers, and presumably other wind-sensing instruments, respond to stress rather than wind, accounting for variability due to wind, buoyancy, surface currents, waves and air density.
- The relationship between U_{r10N} and τ given found using a neutral drag coefficient C_{D10N} :

$$\vec{\tau} = \rho_a C_{D10N} \vec{U}_{r10N} | \vec{U}_{r10N} |$$

• Geophysical Model Functions (GFMs) are typically derived using equivalent neutral winds from buoy and model data using MO similarity scaling:

$$U_{r10N} = U(z_b) - U_0 + \frac{u_*}{\kappa} \left[\ln\left(\frac{10}{z_b}\right) + \psi_m\left(\frac{z_b}{L}\right) \right] \qquad \Longrightarrow \qquad u_*^2 = \left| \vec{\tau} \right| \qquad \& \quad \frac{z}{L} = -\frac{z\kappa g}{T_v} \frac{wT_v}{u_*^3}$$

The primary objectives of the IOVWST Wind Stress Working Group (WSWG) are:

- Improved estimates of wind stress derived from scatterometer estimates of the equivalent neutral wind via a WSWG recommended drag coefficient.
- Investigate the need for more direct estimates of wind stress from scatterometer measurements of surface roughness.

Preliminary (TDB) Charge

- Recent studies find that scatterometers, and presumably other wind-sensing instruments, respond to stress rather than wind, accounting for variability due to wind, buoyancy, surface currents, waves and air density.
- The relationship between U_{r10N} and τ given found using a neutral drag coefficient C_{D10N} :

$$\vec{\tau} = f(\vec{\sigma}_0, \ldots)$$

- 1. WSWG recommended bulk formula.
- 2. Direct covariance measurements.

I have a dream . . .

The primary objectives of the IOVWST Wind Stress Working Group (WSWG) are:

- Improved estimates of wind stress derived from scatterometer estimates of the equivalent neutral wind via a WSWG recommended drag coefficient.
- Investigate the need for more direct estimates of wind stress from scatterometer measurements of surface roughness.

The following issues have all been considered by the IOVWSTs. The IOVWSTs have a good handle on some of them and significant disagreement or overall lack of understanding exists with other.

- Currents and stability corrections and consideration
- Dependence of surface stress on air density.
- Drag coefficient and surface roughness formulations.
- Sea-state dependent drag coefficients.
- Geophysical model function based on surface stress
- Noise and non-linearity
- Physical models of scattering and relation to surface stress.
- Water temperature dependency of surface characteristics (e.g., viscosity, density and tension effect on gravity-capillary waves)
- Extreme wind conditions

The following issues have all been considered by the IOVWSTs. The IOVWSTs have a good handle on some of them and significant disagreement or overall lack of understanding exists with other.

- Currents and stability corrections and consideration
- Dependence of surface stress on air density.
- Drag coefficient and surface roughness formulations.
- Sea-state dependent drag coefficients.
- Geophysical model function based on surface stress
- Noise and non-linearity
- Physical models of scattering and relation to surface stress.
- Water temperature dependency of surface characteristics (e.g., viscosity, density and tension effect on gravity-capillary waves)
- Extreme wind conditions

The following issues have all been considered by the IOVWSTs. The IOVWSTs have a good handle on some of them and significant disagreement or overall lack of understanding exists with other.

- Currents and stability corrections and consideration
- Dependence of surface stress on air density.
- Drag coefficient and surface roughness formulations.
- Sea-state dependent drag coefficients.
- Geophysical model function based on surface stress
- Noise and non-linearity
- Physical models of scattering and relation to surface stress.
- Water temperature dependency of surface characteristics (e.g., viscosity, density and tension effect on gravity-capillary waves)
- Extreme wind conditions

Measured wind profiles in high-wind conditions from dropwinsondes.

3rd Talk in Session

Extreme Wind Conditions

separation?

The following issues have all been considered by the IOVWSTs. The IOVWSTs have a good handle on some of them and significant disagreement or overall lack of understanding exists with other.

- Currents and stability corrections and consideration
- Dependence of surface stress on air density.
- Drag coefficient and surface roughness formulations.
- Sea-state dependent drag coefficients.
- Geophysical model function based on surface stress
- Noise and non-linearity
- Physical models of scattering and relation to surface stress.
- Water temperature dependency of surface characteristics (e.g., viscosity, density and tension effect on gravity-capillary waves)
- Extreme wind conditions

- The drag coefficient (C_D) and roughness length (z_o) cannot be accurately determined
- Displacement height is highly sensitive to U_{sfc} if z_o is large (and it will be for a tropical cyclone), so it is also impractical to estimate
- On the other hand, the estimate of friction velocity (u_{*}) is
 - only weakly depending on U_{sfc}, and
 - weakly depending on d if z >> d.
- Therefore, it is possible to get a relatively good estimate of u*.
 - How good depends on the number and quality of observations that are close to the surface but well above the wave height
- Given friction velocity and air density, an reasonably accurate stress could be calculated
- Tests with the Powell et al (2003) data indicate robust values for u_{*}

Mark Bourassa The Florida State University Log Profiles and Stress 15